
Contents

1 Mounting the CD 4

1.1 AIX 4.3.x . 4

1.2 Compaq Tru64 UNIX 4.x, 5.x . 4

1.3 HP-UX 10.20 . 4

1.4 HP-UX 11.x . 5

1.5 IRIX 6.x . 5

1.6 Redhat Linux 7.x . 5

1.7 Solaris 2.x . 5

2 QuickStart Guide 6

3 Package Overview 9

3.1 Installation paths . 9

3.1.1 Package configuration files . 9

3.1.2 Startup scripts . 11

3.2 Installation configuration files . 11

3.2.1 Common bin, info, man links (COMMON BASE) 12

3.2.2 Verbose output (INST VERBOSE) . 13

3.2.3 Upgrades . 13

INST UPGRADE . 13

CONFIG UPGRADE . 13

3.3 Package dependencies . 14

4 Package Utilities Suite (pkgutils) 15

Package Installation Instructions 1

4.1 Installing packages (pkg-inst) . 15

4.1.1 Package installation database . 17

4.1.2 Extracting native package from .pkg-inst archive 17

4.1.3 Installing RPM packages . 18

4.1.4 Installing packages from a remote repository 18

4.1.5 Checking GPG signature of packages . 20

4.1.6 Configuration file . 21

4.1.7 Inside pkg-inst . 22

Local and remote repositories . 22

The depot-db.xml file . 22

The pkg-db.xml file . 23

4.2 Removing packages (pkg-rm) . 23

4.3 Package Information (pkg-info) . 24

4.4 Package Configuration (pkg-config) . 26

4.5 Checking for updates (chk-pkg-updates) . 27

5 Solaris 2.x (pkgadd) 29

6 IRIX 6.x (inst) 30

6.1 Procedure scripts . 31

7 HP-UX 10.20, 11.x (depot) 32

8 Compaq Tru64 UNIX 4.0D, 5.1 (setld) 33

8.1 Patch requirement for Tru64 UNIX 5.1 . 34

9 AIX 4.3.2 (lpp) 35

9.1 Procedure scripts . 36

9.2 Handling non-portable files . 36

10 RPM (Redhat Linux and others) 38

10.1 Configuring RPM . 39

10.2 Package installation . 39

Package Installation Instructions 2

10.3 Package removal . 40

10.4 Package upgrade . 40

10.5 Procedure scripts . 40

11 Installation Scenarios 42

11.1 Installation for multiple platforms onto a central server using RPM 42

Package Installation Instructions 3

Chapter 1

Mounting the CD

CDs are created to conform to the ISO-9660 standard with Rock Ridge extensions. The examples below
assume a particular SCSI ID or device path for the CD-ROM drive. Please adjust for your configuration.

1.1 AIX 4.3.x
Issue the following command to mount the CD-ROM:

$ mount -rv cdrfs /dev/cd0 /mnt

1.2 Compaq Tru64 UNIX 4.x, 5.x
Tru64 UNIX 4.0D does not, by default, understand the Rock Ridge extensions. Therefore, the mount
comand must be instructed to interpret the Rock Ridge Extensions to mount the CD. On Tru64 UNIX 4.0D,
issue the following command to mount the CD:

$ mount -t cdfs -o ro,rrip /dev/rz4c /mnt

On Tru64 UNIX 5.x, which does understand the Rock Ridge extension by default, issue the following
command to mount the CD:

$ mount -t cdfs -o ro /dev/disk/cdrom0c /mnt

1.3 HP-UX 10.20
The HP-UX 10.20 mount(1M) command does not support the Rock Ridge extension to ISO-9660 CDs.

Because the mount(1M) command cannot be patched to support the Rock Ridge formatted CDs, the pfs
daemons must be started prior to mounting the CD. The pfs suite of utilities, shipped with the OS, provide
the ability to support the Rock Ridge extensions. To use the pfs tools, two daemons must be started,
invoked with the following commands:

$ pfs_mountd &

Package Installation Instructions 4

$ pfsd &

Once the above is done, the following commands are used to mount and unmount the CD:

$ pfs_mount -t rrip -o ro /dev/dsk/c0t4d0 /mnt

$ pfs_umount /mnt

The pfsd and pfs mountd programs must be killed once the CD is unmounted.

1.4 HP-UX 11.x
The PHCO 26449, PHKL 26450, and PHKL 28060 patches must be installed to add Rock Ridge support
for HP-UX 11.00 and the PHKL 26269, PHCO 25841, and PHKL 28025 patches must be installed for
HP-UX 11i (11.11).

Once the above patches have been applied, the following command can be used to mount the CD:

$ mount -o ro,rr /dev/dsk/c0t4d0 /mnt

1.5 IRIX 6.x
If the IRIX mediad daemon is running, the CD will mount automatically on /CDROM. If mediad is not
running, issue the following command to mount the CD:

$ mount -t iso9660 -o ro /dev/rdsk/dks0d4vol /mnt

1.6 Redhat Linux 7.x
During installation of Redhat Linux, if a CD-ROM is detected, it will be given the device name
/dev/cdrom. An entry will also be created in /etc/fstab to mount the CD-ROM on /mnt/cdrom. If
such an entry exists, executing the following with mount the CD-ROM:

$ mount /mnt/cdrom

If a pre-defined entry does not exist for the CD-ROM, it can be mounted as follows:

$ mount -o ro -t iso9660 /dev/scd0 /mnt

1.7 Solaris 2.x
If the Solaris vold daemon is running, the CD will automatically mount to /cdrom/cdrom#. If vold is
not running, issue the following command to mount the CD:

$ mount -F hsfs -o ro /dev/dsk/c0t4d0s0 /mnt

Package Installation Instructions 5

Chapter 2

QuickStart Guide

CDs are organized along the following directory hierarchy:

INSTALL.pdf

MANIFEST

README

RELEASE-NOTES.pdf

cd/

cd/depot-db.xml

cd/[platform]/

package-list

package-notes/

support/

INSTALL.pdf: Installation documentation

MANIFEST: Description of contents of CD

RELEASE-NOTES.pdf: Release notes for this release

cd/[platform]/: Pre-compiled binaries in the native vendor package-manager format or RPM

package-list: List of packages on the CD

package-notes/: Package notes and licensing information for packages on the CD

support/: Installation and support tools on the first binary CD. Contains the pbutils,
pkgutils, and sbutils tools.

The pkgutils suite should be the first package installed. Once installed, the pkg-inst tool documented
in section 4.1 can be used to install the packages on each CD or in a remote repository.

Table 2.1 lists the commands needed to install the packages that comprise the pkgutils suite depending
on the platform. The instructions assume the CD-ROM is mounted on ‘/cdrom’. The packages are
available in the “support” directory of the first binary CD-ROM or via ftp at
“ftp://support.thewrittenword.com/dists/5.1/support”. The latest version is always

Package Installation Instructions 6

available on the ftp site. If installing RPM packages, the RPM package must be installed first, followed by
the pkgutils suite. Table 2.2 lists the commands to install RPM. Section 10.1 should be consulted after
RPM is installed to configure the RPM database.

The pkgutils suite, once installed, will reside in /opt/TWWfsw/pkgutils15 with symbolic links for
the binaries in /opt/TWWfsw/bin and the man pages in /opt/TWWfsw/man.

Table 2.1: Installing the pkgutils suite

Platform Installation command
AIX 4.3.2 $ installp -acqQ -d /cdrom/support/TWW.pkgutils15.bff

TWW.pkgutils15

HP-UX 10.20, 11.x $ swinstall -s /cdrom/support TWWpkgut15

IRIX 6.x $ inst -a -f /cdrom/support -I TWWpkgutils15

RPM1 $ cd /cdrom/support

$ rpm -Uv TWWpkgutils15-1.5.11-1.arch 2.rpm

$ rpm -Uv TWWpkgutils15-conf-1.5.11-1.arch 2.rpm

$ rpm -Uv TWWpkgutils15-man-1.5.11-1.arch 2.rpm

Solaris 2.x $ pkgadd -d /cdrom/support TWWpkg15c

$ pkgadd -d /cdrom/support TWWpkg15m

$ pkgadd -d /cdrom/support TWWpkg15u

Tru64 UNIX 4.0D $ cd /cdrom/support

$ setld -l . TWWPKGUTILS15CONF425

$ setld -l . TWWPKGUTILS15BIN425

$ setld -l . TWWPKGUTILS15MAN425

Tru64 UNIX 5.1 $ cd /cdrom/support

$ setld -l . TWWPKGUTILS15CONF510

$ setld -l . TWWPKGUTILS15BIN510

$ setld -l . TWWPKGUTILS15MAN510

1 The RPM package manager might need to be configured before it can be used. Chapter 10 contains
information on configuring RPM.

2 arch is dependent on the platform: AIX (“ppc”); IRIX (“mipseb”); HP-UX (“parisc”); Redhat
Linux (“i386”); Solaris (“sparc”); Tru64 UNIX (“alpha”)

Package Installation Instructions 7

Table 2.2: Installing RPM

Platform Installation command
AIX 4.3.2 $ installp -acqQ -d /cdrom/support/TWW.rpm40.bff

TWW.rpm40

HP-UX 10.20, 11.x $ swinstall -s /cdrom/support TWWrpm40

IRIX 6.x $ inst -a -f /cdrom/support -I TWWrpm40

Solaris 2.x $ pkgadd -d /cdrom/support TWWrpm40c

$ pkgadd -d /cdrom/support TWWrpm40m

$ pkgadd -d /cdrom/support TWWrpm40u

Tru64 UNIX 4.0D $ cd /cdrom/support

$ setld -l . TWWRPM40BIN425

$ setld -l . TWWRPM40CONF425

$ setld -l . TWWRPM40MAN425

Tru64 UNIX 5.1 $ cd /cdrom/support

$ setld -l . TWWRPM40BIN510

$ setld -l . TWWRPM40CONF510

$ setld -l . TWWRPM40MAN510

Package Installation Instructions 8

Chapter 3

Package Overview

All packages are installed using either the pkg-inst tool or the vendor-supported package management
system (the use of pkg-inst is strongly recommended). Due to the differences between the package
management systems on each of our supported platforms, installation, depending on the platform, is
different unless using the pkg-inst tool. This document outlines how packages are installed, upgraded,
and removed. Some detail is also provided on the workarounds implemented to achieve uniformity in
installation for all package management systems supported.

3.1 Installation paths
All packages install into /opt/TWWfsw/package . For example, GNU bash is installed into
/opt/TWWfsw/bash, less to /opt/TWWfsw/less, and GIMP to /opt/TWWfsw/gimp10. For some
packages, the major and/or minor number might appear in ‘package’. Examples of this are the GTK+ 1.2.6
library installed as /opt/TWWfsw/gtk+12, the Glib 1.2.6 library installed as /opt/TWWfsw/glib12,
and XEmacs 20.4 installed as /opt/TWWfsw/xemacs20. Installation for these packages deviates from the
norm to support multiple versions.

3.1.1 Package configuration files

Configuration files are installed into one of three directories:

1. /opt/TWWfsw/package /config

2. /etc/init.d/config

3. /etc/opt/TWWfsw/package /config

Example of files in category #1 are the configuration files from the tin news reader,
“/opt/TWWfsw/tin/etc/tin.defaults”, “/opt/TWWfsw/tin/etc/nntpserver”, and
“/opt/TWWfsw/tin/etc/NNTP INEWS DOMAIN”. Examples of files in category #2 are startup scripts
for Apache and Samba, “/etc/init.d/TWWapache1320” and “/etc/init.d/TWWsamba221”.
Examples of files in category #3 are configuration files for TCP Wrappers,
“/etc/opt/TWWfsw/tcpwrap/hosts.allow” and “/etc/opt/TWWfsw/tcpwrap/hosts.deny”.

Package Installation Instructions 9

While a default location is always provided for the location of the configuration files to be used by binaries
of the relevant programs, their location can usually be changed by a command-line option or environment
variable.

The rationale for selecting whether or not a configuration file should be installed using category #1 or #3 is
determined based on how often the configuration file will be used. In the case of Apache, more than one
web server might not necessarily share the same ‘httpd.conf’ file. However, for a package such as ‘tin’,
a configuration file containing the name of the NNTP server will be shared by the majority of users running
tin. Moreover, if ‘tin’ is installed to an NFS-mounted area, a change to the configuration file will allow an
immediate update to all clients as the configuration file would also reside on the NFS server. And, for those
clients that need a separate configuration file, which should be few, a custom startup script or environment
variable can be set.

Configuration files are managed using the following criteria:

1. Configuration files are explicitly marked in a package

2. Some configuration files are treated as “upgradable” (files from category #2 above won’t be but those
from categories #1 and #3 will be). Configuration files thus marked will be copied from the old
installation path to the new installation path when a new version is installed and the installation path
changes.

3. If a configuration file is treated as upgradable, copy the version from the old installation path and
rename the version installed by the package as file.tww-orig only if the original configuration
file has changed. This is governed by the installation configuration variable “CONFIG UPGRADE”. The
default value is “latest” which indicates the copy should be performed. Any other value will
prevent the copy. When the old configuration file is copied over, replace the string
“/opt/TWWfsw/old package ” with “/opt/TWWfsw/new package ” in the new configuration
file.

4. If a configuration file is not treated as upgradable and the package is reinstalled, do not replace the
configuration file if it has the same checksum as what was originally installed (if the file changes it is
not overwritten).

5. By default, local changes are preserved and new configuration files that would have overwritten the
original version are saved as file.tww-new. This file is automatically removed when the package is
removed but is available to sync up the new configuration file against the local changed version.

RPM is intelligent enough to remove files from an old package that are not present in the new package.
Thus, we let RPM deal with configuration files completely except for new RPM packages where the
installation path is different. In this case, a postinstall script will run at package installation time to copy the
old configuration file to the new installation path. Due to this ”intelligence”, we will only mark
configuration files as upgradable for new packages which install into a different directory than the older
version.

For AIX lpp, Solaris pkgadd, HP-UX depot, Tru64 UNIX setld, and IRIX inst, configuration files are managed
by the postinstall script. With the exception of Solaris, the various system tools used to generate a listing of
the files for a package will not include the configuration files. The postinstall script creates a file named
“.tww-toc” in each directory containing a configuration file to store the name of the configuration file
and a checksum so the above can be accomplished. For RPM, the file is called “.tww-config-inst”, and

Package Installation Instructions 10

simply indicates if the configuration files from an older version have been copied over.

3.1.2 Startup scripts

Startup scripts are sometimes created in ‘/etc/init.d’ or ‘/sbin/init.d’ with appropriate links in
‘/etc/rc*.d’ or ‘/sbin/rc*.d’ depending on the platform. Startup scripts are installed as part of the
local configuration package and are automatically removed when the package is removed. Before the local
configuration package is removed, the ‘stop’ shutdown action in the startup scripts should be invoked to
stop any running daemons executed by the package. This is not automatically performed when the local
configuration package is removed. On HP-UX, if the daemons invoked by the startup script are not stopped
prior to removing the runtime package, the daemons will not be removed because the daemons are still
executing.

All startup scripts are marked as configuration files but not marked as upgradable.

3.2 Installation configuration files
A configuration file is used by the package installation scripts for all platforms to read defaults governing
package installation. The configuration file is searched for in the following order:

1. /opt/TWWfsw/etc/tww-inst-configs/package

2. /opt/TWWfsw/etc/tww-inst-configs/default

3. /etc/opt/TWWfsw/configs/package

4. /etc/opt/TWWfsw/configs/default

The configuration files ‘/opt/TWWfsw/etc/tww-inst-configs/package ’ and
‘/etc/opt/TWWfsw/configs/package ’ allow per-package defaults.

It is important to note that the configuration filename does not match the name of the package but the
installation component of the pathname. In addition, the configuration file for programs with 3rd-party
packages such as Perl and XEmacs does not contain the ‘p’ extension at the end. Similarly for packages with
the library runtime component. Thus, the configuration filename for ghostscript 5.50 which installs into
‘/opt/TWWfsw/ghostscript’ is ‘/etc/opt/TWWfsw/configs/ghostscript’, the configuration
filename for ghostscript 7.05 which installs into ‘/opt/TWWfsw/ghostscript70’ is
‘/etc/opt/TWWfsw/configs/ghostscript60’, and the configuration filename for perl 5.6.1 which
installs into ‘/opt/TWWfsw/perl561’ and ‘/opt/TWWfsw/perl561p’ is
‘/etc/opt/TWWfsw/configs/perl561’. The pkg-info program with the
‘--print=install-path’ option is useful in determining the installation path component of a package.

$ pkg-info --depot=[cd mount point] --print=install-path perl
perl
depot containing v5.8.0-6 of this package ...
file:///[cd mount point]

installation path component for v5.8.0 ... perl580
instances ... TWWpl580m TWWpl580p TWWpl580u

depot containing v5.6.1-19 of this package ...
file:///[cd mount point]

installation path component for v5.6.1 ... perl561

Package Installation Instructions 11

instances ... TWWpl561m TWWpl561p TWWpl561u

3.2.1 Common bin, info, man links (COMMON BASE)

When packages are installed, a set of links is made for binaries, info, and man pages. The default path used
as the base directory for the links is ‘/opt/TWWfsw’. This default can be altered by adding the following
variable assignment to the configuration file:

COMMON_BASE=<base directory>

A value of ‘none’ indicates that common links should not be created.

Solaris packages prompt for the value of this variable except when specified in the configuration file. For
RPM packages, the variable name to set the common base directory is ‘COMMON BASE systype’ where the
value of ‘systype’ is determined by table 3.1. Because RPM provides a cross-platform packaging solution,
‘COMMON BASE’ differs to allow for installation of different architectures on the same platform for access
from NFS clients.

Table 3.1: COMMON BASE systype definitions

Platform systype Value
AIX 4.3.2 powerpc-ibm-aix4.3.2.0

HP-UX 10.20 hppa1.1-hp-hpux10.20

HP-UX 11.00 hppa1.1-hp-hpux11.00

HP-UX 11.11 hppa1.1-hp-hpux11.11

IRIX 6.5 mips-sgi-irix6.5

Redhat Linux i686-pc-linux-gnu

Solaris 2.5.1 sparc-sun-solaris2.5.1

Solaris 2.6 sparc-sun-solaris2.6

Solaris 7 sparc-sun-solaris2.7

Solaris 8 sparc-sun-solaris2.8

Solaris 9 sparc-sun-solaris2.9

Tru64 UNIX 4.0D alpha-dec-osf4.0d

Tru64 UNIX 5.1 alpha-dec-osf5.1

Thus, setting this variable to ‘/opt/’ will create links in ‘/opt/bin’, ‘/opt/sbin’, ‘/opt/info’, and
‘/opt/man’. Setting the variable to ‘/opt/TWWfsw’ (note the omission of the trailing slash) will create
links in ‘/opt/TWWfswbin’, ‘/opt/TWWfswsbin’, ‘/opt/TWWfswinfo’, and ‘/opt/TWWfswman’.
The ‘bin’, ‘sbin’, ‘info’, and ‘man’ path components are appended to the value of ‘COMMON BASE’.

Should you install a package without having common directories created and wish to do so in the future,
the ‘pkg-config’ (cf. section 4.4) program can be used. This is a requirement for Solaris pkgadd and IRIX
inst which do not allow separate execution of the postinstall scripts. The package management systems on
HP-UX and Tru64 UNIX allow configuration and unconfiguration of a package after it has been loaded. The
configuration script included with each package would create the symbolic links while the unconfiguration
script would remove the symbolic links. More detail is given below under the respective platform about the
commands to achieve this. Once the links are created in the common directories, the links are registered as

Package Installation Instructions 12

belonging to the package they create a link to. Because of this, removing packages automatically removes
the links created in the common directories during the time of the install. A separate program does not
need to be run to prune links in the common directories.

In addition to the creation of symbolic links, info entries are added to the ‘dir’ file in the common info
directory. Their entries will be removed when the package is deleted. To support this, all packages contain a
statically-linked version of the texinfo ’install-info’ utility in the
’/opt/TWWfsw/package /tww-inst’ directory. Some architectures contain more files in this directory
to aide in managing the creation and removal of links at package installation and removal time.

3.2.2 Verbose output (INST VERBOSE)

The ‘INST VERBOSE’ variable in the global configuration file specifies verbosity of output during the
installation process. Valid values are 0 thru 9 and formatted as:

INST_VERBOSE=[0-9]

Setting the verbosity to 9 invokes a ’set -x’ on the installation scripts. Currently, only values of 0, 1 and 9
have meaning. The default value is ‘1’. Setting the value to ‘0’ generates no output from preinstall and
postinstall scripts.

3.2.3 Upgrades

INST UPGRADE

When a package is upgraded from an older release to a newer release, the installation path either remains
the same or changes. When the path remains the same, the links created by the initial install for the
common directories will be maintained for the new release, providing the destination of the links is still
valid. If the installation path changes, the default action of the postinstall script when attempting to create
the common links will be to replace the existing common links, pointing to the old path, with links pointing
to the new path. A value of ‘none’ causes a warning message without replacing the links. The default value
of ‘INST UPGRADE’ is ‘latest’, indicating the installation of the new release will remove links created in
the common directories to all old releases and recreate them pointing to the new release. This is only done
for links that conflict between releases.

CONFIG UPGRADE

When a new version of an existing package is installed with a different installation path (e.g. Apache 1.3.14
installs into /opt/TWWfsw/apache1314 and Apache 1.3.20 installs into /opt/TWWfsw/apache1320),
this variable governs whether or not the configuration files from the previous version should be copied over
for the new version. The default, “latest”, allows the copy. Any other value will prevent the copy.

Section 3.1.1 contains more details about package configuration files.

Package Installation Instructions 13

3.3 Package dependencies
With the exception of Tru64 UNIX, all packages are built with dependency information. In the case of Tru64
UNIX, the package management system is not robust enough to make dealing with dependencies and
upgrades simple. If installing packages with the pkg-inst tool, dependencies are automatically handled
even if the package has not been built with dependency information as part of the package.

Package Installation Instructions 14

Chapter 4

Package Utilities Suite (pkgutils)

The pkgutils suite contains tools to assist in configuring, installing, managing, and upgrading an
installation. The tools that comprise the suite work on all supported platforms regardless of the underlying
package management system. With these tools, very little knowledge of the package management system is
required.

4.1 Installing packages (pkg-inst)
The pkg-inst tool is part of the pkgutils suite. It is used to install and upgrade a package. In the
architecture directory of the CD distribution is a package database file named ‘pkg-db.xml’ that drives
pkg-inst. The package database file contains information about all packages in the directory it resides in
and what dependencies each package has. With this knowledge, pkg-inst is able to install and upgrade
packages regardless of the underlying package management system.

General usage for pkg-inst is:

$ pkg-inst --depot=[depot] [packages ...]

Multiple depot directories can be specified, with each expected to contain either a ‘pkg-db.xml’ file
and/or a ‘depot-db.xml’ file. The ‘depot-db.xml’ file contains information about subdirectories that
are to be descended into to search for additional ‘depot-db.xml’ and ‘pkg-db.xml’ files. Because of
this file, it is possible for pkg-inst to recursively descend into directories to search for packages. By
default, pkg-inst will descend into all subdirectories listed in the ‘depot-db.xml’ file. The
--update-type option can be used to restrict where pkg-inst packages are searched. The general
layout of a depot is:

[depot]/cd/depot-db.xml
[depot]/cd/dists/depot-db.xml
[depot]/cd/dists/5.1
[depot]/cd/dists/5.1/depot-db.xml
[depot]/cd/dists/5.1/errata/
[depot]/cd/dists/5.1/errata/depot-db.xml
[depot]/cd/dists/5.1/errata/sparc-sun-solaris2.8/
[depot]/cd/dists/5.1/errata/sparc-sun-solaris2.8/pkg-db.xml

By default, all subpackage components of a package will be installed. When dependencies are required for a

Package Installation Instructions 15

package and the ‘--ignoredeps’ option is not given, only those subpackage components needed to meet
the dependency will be installed.

The following is a quick example of how much easier package installation is with pkg-inst. It is a sample
run of the installation of GNU zip (gzip) on Solaris. Examples using the native package management system
are given in the chapters to follow describing how to install, remove, and updates packages using the native
package management system. Comparing the two, it should be easy to see how much simpler pkg-inst
makes the installation process.

$ pkg-inst --depot=/tmp/depot gzip
gzip
depot containing v1.3.5-1 of this package ...
file:///tmp/depot

checking if already installed ... no
components to install: TWWgzp13m, TWWgzp13u, TWWgzp13d

checking for dependencies ... none
installing TWWgzp13m ...
$ pkgadd -a /opt/TWWfsw/pkgutils15/share/pkgadd/admin -d
/opt/dist/cd/TWWgzp13m TWWgzp13m
...
updating package database entry for man fileset ... done

installing TWWgzp13u ...
$ pkgadd -a /opt/TWWfsw/pkgutils15/share/pkgadd/admin -d
/opt/dist/cd/TWWgzp13u TWWgzp13u
...
updating package database entry for runtime fileset ... done

installing TWWgzp13d ...
$ pkgadd -a /opt/TWWfsw/pkgutils15/share/pkgadd/admin -d
/opt/dist/cd/TWWgzp13d TWWgzp13d
...
updating package database entry for doc fileset ... done

The following command can be used to install the latest versions of all packages in a depot. However, it will
not necessarily install all packages in the depot. If more than one version of a package is present in the
depot (e.g. Tcl 8.0, 8.1, and 8.2) only the latest version will be installed (e.g. Tcl 8.2).

$ pkg-inst --depot=[depot]

When upgrading to a new release, it might not be desirable to install all packages. Rather, it might be more
desirable to install only newer versions of those packages are already installed. The ‘--match-target’
option, with the appropriate argument, will install only those packages in the depot that are already
installed on the target. Thus, if the current version of Tcl on the target is 8.0.4 and the depot contains both
Tcl 8.0.5 and Tcl 8.1.1, the following command will install only the 8.0.5 version whereas the above
command would have installed both the 8.0.5 and 8.1.1 versions:

$ pkg-inst --match-target=package --depot=[depot] tcl

To upgrade to the latest version of tcl, use ‘--match-target=name’. In the case above, if the target
contains Tcl 8.0.5 and Tcl 8.0.5 and Tcl 8.1.1 are available, v8.1.1 would be installed with:

$ pkg-inst --match-target=name --depot=[depot] tcl

The ‘--match-target=package’ option matches against an installed package instance, what the
package manager knows the name of the package as. In the case of Tcl 8.0.4, for Solaris/pkgadd this is
‘TWWtcl80’. With the ‘--match-target=name’ option, pkg-inst bases the upgrade on what it knows

Package Installation Instructions 16

the package name as. In the case of Tcl 8.0.4, 8.0.5, and 8.1.1, the name is ‘tcl’.

The ‘--remove-prev-ver’ option will remove older versions of all packages installed by pkg-inst,
providing the older version is not a dependency for another package. It does this by building a running list
of successfully installed packages, determining the previous versions using the global pkg-db.xml file, and
then invoking pkg-rm to remove the packages (without the ‘--add-inverse-deps’ option). This
method has the side effect of requiring more disk space because, if upgrading from 3.2 to 3.3, all 3.2 and
3.3 packages will be installed before package deletion begins. Because pkg-inst must wait until all
packages are installed to determine which were successfully installed, just-in-time deletion of older packages
cannot be performed because a package selected for installation but not yet installed might be dependent
on an older version of an already-installed package.

4.1.1 Package installation database

For each subpackage installed, an entry is written to a package database directory specified with the
--pkg-db=path entry. Files in the database directory are named after the installed package and in XML
format, similar to the ‘pkg-db.xml’ file. These files are updated as packages are installed, updated, and
removed. The default path for the package database is /var/opt/TWWfsw/pkgutils15. Special
considerations must be taken with the database path for RPM packages (cf. section 4.1.3). If a package is
installed and removed without the pkg-rm command, pkg-inst will fail with the following warning (this
warning is ignored if --reinstall is given):

installing [package] ...
A pkg-db entry for this package already exists. This should not
occur. Maybe the pkg-db entry is corrupt? Please check
/var/opt/TWWfsw/pkgutils15/jpeg-6b.

To create files in the new package database for packages installed with a previous release, use the
pkg-info command with the ‘--update-pkg-db’ option.

$ ls -ld /var/opt/TWWfsw/pkgutils15/python-2.1.2
/var/opt/TWWfsw/pkgutils15/python-2.1.2: No such file or directory
$ pkg-info --update-pkg-db --verbose
...
python
checking if v2.1.2 installed (TWW.python212) ... yes
installed instances ... TWW.python212.man TWW.python212.doc
TWW.python212.rte TWW.python212.pkg
updating package database entry for man fileset ... done
updating package database entry for doc fileset ... done
updating package database entry for runtime fileset ... done
updating package database entry for packages fileset ... done

...
$ ls -ld /var/opt/TWWfsw/pkgutils15/python-2.1.2
-rw-r--r-- 1 root system 839 May 17 00:23 python-2.1.2

4.1.2 Extracting native package from .pkg-inst archive

The “--extract=path ” option is available to copy the raw package out of the .pkg-inst archive to a
local directory. The pkg-inst(1) man page documents this option and how the package is copied to the
destination directory.

Package Installation Instructions 17

4.1.3 Installing RPM packages

pkg-inst needs no assistance when installing packages for the native package management systems.
However, if installing RPM packages for multiple platforms on the same host, the default database path,
‘/var/opt/TWWfsw/rpm40/lib/rpm’ will not be sufficient. A separate database directory must exist
for each platform. The following options are of particular importance:

--rpm-arch=<arch> RPM architecture type. Possible types are:
alpha (Tru64 UNIX 4.x, 5.x)
i386 (Redhat Linux)
mipseb (IRIX 6.x)
parisc (HP-UX 10.20, 11.x)
ppc (AIX 4.3.2)
sparc (Solaris 2.x)

--rpm-db=<dir> RPM database path

If installing for a non-native architecture, the ‘--rpm-arch=arch ’ option specifies which platform to
install for. This is important because, by default, pkg-inst will select a default architecture name (from
the list above) based on the host platform pkg-inst is running on. Because the RPM package name
contains the architecture type, pkg-inst must know the correct architecture type to select the correct
RPM file. The examples below demonstrate the pkg-inst equivalent commands for each of the RPM
commands. Some of the examples are given in section 10.2.

$ rpm -Uv --dbpath /var/rpm/sparc-sun-solaris2.5.1 --relocate \
/opt/TWWfsw=/nfs/sparc-sun-solaris2.5.1 --ignorearch --ignoreos \
/tmp/solaris2.5.1-rpms/TWWtin-1.4.2-1.sparc.rpm
$ pkg-inst --rpm-db=/var/rpm/sparc-sun-solaris2.5.1 -e --relocate
-e /opt/TWWfsw=/nfs/sparc-sun-solaris2.5.1 -e --ignorearch -e --ignoreos
--depot=/tmp/solaris2.5.1-rpms tin

$ rpm -Uv --dbpath /var/rpm/sparc-sun-solaris2.6 --relocate \
/opt/TWWfsw=/nfs/sparc-sun-solaris2.6 --ignorearch --ignoreos \
/tmp/solaris2.6-rpms/TWWtin-1.4.2-1.sparc.rpm
$ pkg-inst --rpm-db=/var/rpm/sparc-sun-solaris2.6 -e --relocate
-e /opt/TWWfsw=/nfs/sparc-sun-solaris2.6 -e --ignorearch -e --ignoreos
--depot=/tmp/solaris2.6-rpms tin

$ rpm -Uv /tmp/solaris2.8-rpms/TWWtin-1.4.2-1.sparc.rpm
$ pkg-inst --depot=/tmp/solaris2.8-rpms tin

4.1.4 Installing packages from a remote repository

In addition to installing packages from a local repository, a remote repository, available through the HTTP
protocol, can be used. A package format has been created for use with pkg-inst. Filenames ending with
‘.pkg-inst’ contain the binaries in Zip archive format and filenames ending with ‘.pkg-inst.md5’
contain the MD5 checksum of the ‘.pkg-inst’ archive. The following options to pkg-inst are of
importance:

--dist=<dist> Name of distribution to update. Default
value is "cd" for the normal distribution.
Used mainly when installing from a
remote depot.

--local-depot=<depot> Path to local repository to store
files retrieved from remote repositories

Package Installation Instructions 18

--login=<login> Login for remote depot
--password=<pass> Password for remote depot
--proxy-host=<host:port> Hostname and proxy of proxy server
--proxy-login=<login> Login for proxy server
--proxy-password=<pass> Password to proxy server
--update-type=<type> Limit updates to <type>. Possible types are:

errata packages security support updates
Default type is "packages". Used mainly
when installing from a remote depot.

To install remote packages, a local repository must be created to save the downloaded packages. This
directory is specified with the ‘--local-depot=depot ’ option. pkg-inst will create a temporary
working directory to extract the ‘.pkg-inst’ files when working (usually in ‘/var/tmp’).

Installation from a remote depot is similar to installation from a local depot. As with the local depot,
--depot=depot specifies the location of the depot. If the target is behind a firewall, the
--proxy-host=host:port , --proxy-login=login , and --proxy-password=password

options can be used to penetrate the firewall. If a login and password are required for authentication to the
depot, the --login=login and --password=password options must be used. HTTP BASIC
authentication is used for authentication to remote depots. The --update-type=type option specifies
which directory in the depot to install packages from. If not specified and the base of the remote depot
contains a ‘depot-db.xml’ file, the directories specified in the ‘depot-db.xml’ file are searched for
packages. The ‘--verbose’ option to pkg-inst provides information about what directories are being
searched. All packages from our quarterly distribution are available in the ‘packages’ directory
(‘--update-type=packages’). Updates made available between releases will be available from the
‘errata’, ‘security’, and ‘updates’ directories.

As pkg-inst installs packages from a remote depot, it populates the local depot (specified with
‘--local-depot=depot ’) with the ‘.pkg-inst’ package files. These files are never removed by
‘pkg-inst’. If the packages in the remote depot are updated after the copies are made to the local depot,
pkg-inst will check the remote depot for updates and download newer versions of the packages. If future
installs or reinstallations are necessary, the local depot can be specified as the depot for the
‘--depot=depot ’ option to eliminate the download time. It is also possible to mirror the remote
repository to local disk and specify the local mirror directory as the depot to pkg-inst.

Once the ‘.pkg-inst’ file is downloaded, pkg-inst will verify the file against its MD5 signature, unpack
the archive and the archive’s contents, and proceed with installation. If the MD5 signature check fails,
pkg-inst will re-download the package and proceed to unpack the archive for installation.

The following is a sample run under HP-UX installing MGv, the postscript previewer:

$ pkg-inst --dist-ver=5.1 --local-depot=/tmp/pkg --login=[login]
--password=[password] --depot=http://updates.thewrittenword.com mgv
mgv
depot containing v3.1.5-2 of this package ...
http://updates.thewrittenword.com

checking if already installed ... no
components to install: TWWmgv.TWWmgv-MAN, TWWmgv.TWWmgv-RUN

checking for dependencies ... yes
TWWxpm.TWWxpm-RUN (v>=3.4k, r>=1) ... to be installed

reordering packages ...
adding TWWxpm.TWWxpm-RUN [xpm] (v>=3.4k, r>=1) to package list

Package Installation Instructions 19

found v3.4k-3 in depot http://updates.thewrittenword.com
will reinstall after dependencies installed

xpm
depot containing v3.4k-3 of this package ...
http://updates.thewrittenword.com

checking if already installed ... no
components to install: TWWxpm.TWWxpm-RUN

checking for dependencies ... none
checking if package exists in local depot ... no
retrieving xpm-3.4k-3 package from remote depot ... 100%
verifying MD5 checksum of retrieved package payload ... ok
extracting package files ...
extracting data.zip file ... done
testing data.zip ... done
unpacking data.zip contents ... done

installing TWWxpm.TWWxpm-RUN ...
$ swinstall -s /var/tmp/AAAa26293/TWWxpm.depot TWWxpm.TWWxpm-RUN
...
updating package database entry for runtime fileset ... done

removing temporary files ... done

mgv
depot containing v3.1.5-2 of this package ...
http://updates.thewrittenword.com

checking if already installed ... no
components to install: TWWmgv.TWWmgv-MAN, TWWmgv.TWWmgv-RUN

checking for dependencies ... yes
TWWxpm.TWWxpm-RUN (v>=3.4k, r>=1) ... to be installed

reordering packages ...
skipping TWWxpm.TWWxpm-RUN as installation already attempted

checking if package exists in local depot ... no
retrieving mgv-3.1.5-2 package from remote depot ... 100%
verifying MD5 checksum of retrieved package payload ... ok
extracting package files ...
extracting data.zip file ... done
testing data.zip ... done
unpacking data.zip contents ... done

installing TWWmgv.TWWmgv-MAN ...
$ swinstall -s /var/tmp/BAAa26293/TWWmgv.depot TWWmgv.TWWmgv-MAN
...
updating package database entry for man fileset ... done

installing TWWmgv.TWWmgv-RUN ...
$ swinstall -s /var/tmp/BAAa26293/TWWmgv.depot TWWmgv.TWWmgv-RUN
...
updating package database entry for runtime fileset ... done

removing temporary files ... done

4.1.5 Checking GPG signature of packages

Packages are signed with our GPG key. The ‘--check-sig’ option checks the signature of the package
against our GPG public key in your keyring (specified with ‘--gpg-keyring-path=path ’). Before
running pkg-inst with ‘--check-sig’, the ‘gpg’ binary must be available in your search path ($PATH).
The ‘gpg’ binary is available from the GnuPG package. Our GPG public key can be found at
https://support.thewrittenword.com/ and in the ‘support’ directory of our distribution CDs

Package Installation Instructions 20

under the name ‘public-key.gpg’. The following demonstrates how to import our public key into a
keyring:

$ gpg --no-default-keyring --homedir <keyring path> --import tww-public-key.gpg
gpg: key FE93BD4E:public key imported
gpg: Total number processed: 1
gpg: imported: 1
$ gpg --no-default-keyring --homedir <keyring path> --list-keys
<keyring path>/pubring.gpg

pub 1024D/FE93BD4E 2001-04-08 The Written Word, Inc. <security@thewrittenword.com>
sub 2048g/87A9A2F0 2001-04-08

The following is a sample run under HP-UX installing Xpm with the --check-sig option to check its
GPG signature.

$ pkg-inst --check-sig --gpg-keyring-path=/root/tww-gpg --dist-ver=5.1
--local-depot=/tmp/pkg --login=[login] --password=[password]
--depot=http://updates.thewrittenword.com xpm
xpm
depot containing v3.4k-3 of this package ...
http://updates.thewrittenword.com

checking if already installed ... no
components to install: TWWxpm.TWWxpm-MAN, TWWxpm.TWWxpm-RUN

checking for dependencies ... none
checking if package exists in local depot ... no
retrieving xpm-3.4k-3 package from remote depot ... 100%
verifying MD5 checksum of retrieved package payload ... ok
verifying GPG signature of retrieved package payload ... ok
extracting package files ...
extracting data.zip file ... done
testing data.zip ... done
unpacking data.zip contents ... done

installing TWWxpm.TWWxpm-MAN ...
$ swinstall -s /var/tmp/AAAa26284/TWWxpm.depot TWWxpm.TWWxpm-MAN
...
updating package database entry for man fileset ... done

installing TWWxpm.TWWxpm-RUN ...
$ swinstall -s /var/tmp/AAAa26284/TWWxpm.depot TWWxpm.TWWxpm-RUN
...
updating package database entry for runtime fileset ... done

removing temporary files ... done

4.1.6 Configuration file

A configuration file can be created to help reduce the number of options on the command-line. The
location of the configuration file is ‘/opt/TWWfsw/pkgutils15/etc/pkgutils.conf’. The default
version installed with pkgutils contains verbose descriptions of all options. The configuration file is also
documented in pkgutils.conf(4).

A sample configuration file to retrieve packages from the latest distribution would look like:

local-depot = "/tmp/pkg"

depots = [http://updates.thewrittenword.com]

Package Installation Instructions 21

pkg-db = "/var/opt/TWWfsw/pkgutils15"

depot http://updates.thewrittenword.com {
dist-ver = [latest]

login = <login>
password = <password>

}

Without the configuration file above, the command-line equivalent for pkg-inst would be:

$ pkg-inst --local-depot=/tmp/pkg --dist-ver=latest --login=<login>
--password=<password> --depot=http://updates.thewrittenword.com

With the configuration file, the above would be reduced to executing:

$ pkg-inst

4.1.7 Inside pkg-inst

Local and remote repositories

When specifying a repository with the ‘--depot=depot ’ option, the distribution name, specified with
the ‘--dist=dist ’ option, must exist as a subdirectory of the repository path. Thus, if pkg-inst is
invoked as:

$ pkg-inst --dist-ver=5.1 --depot=http://updates.thewrittenword.com ...

the root path of the repository is ‘http://updates.thewrittenword.com/cd’ where a
‘depot-db.xml’ or ‘pkg-db.xml’ file is expected to reside. If pkg-inst is invoked as:

$ pkg-inst --dist-ver=5.1 --dist=local \
--depot=http://updates.thewrittenword.com ...

the root path of the repository is ‘http://updates.thewrittenword.com/local’.

In the repository root, pkg-inst searches for either the ‘depot-db.xml’ or ‘pkg-db.xml’ file. Unlike
a remote repository, raw packages can reside in the same directory as the ‘pkg-db.xml’ file while with
remote repositories, ‘.pkg-inst’ package files must reside in the same directory as their corresponding
‘pkg-db.xml’ file.

The depot-db.xml file

As indicated previously, pkg-inst can recursively descend into a repository to search for packages. This is
done using the ‘depot-db.xml’ file. pkg-inst expects to find either a ‘depot-db.xml’ or
‘pkg-db.xml’ at the root of a repository and at each directory it descends into. The ‘depot-db.xml’ file
contains a list of directories to recurse into. Therefore, pkg-inst will recurse into the depot to the
directory level specified by ‘depot-db.xml’. The DTD of the ‘depot-db.xml’ file is documented in
depot-db.xml(4) in the pkgutils package.

Package Installation Instructions 22

The pkg-db.xml file

The pkg-inst tool is simply a front-end to the native package management systems. It contains pluggable
backend modules for each supported package manager to handle calls to the native package management
system. To unify the differences between the different package management systems and provide a single
interface to the backend modules, the ‘pkg-db.xml’ file was created which provides all the information
pkg-inst needs to install and remove a package. The ‘pkg-db.xml’ file is at the heart of all utilities in
the pkgutils suite. The DTD of the ‘pkg-db.xml’ file is documented in pkg-db.xml(4).

4.2 Removing packages (pkg-rm)
The pkg-rm tool is used to remove packages installed by pkg-inst. The pkg-rm tool makes use of the
package database specified with --pkg-db=path and the global package database,
‘/opt/TWWfsw/pkgutils15/share/pkg-db.xml’, containing a list of all pkg-inst packages every
created. Only packages in the package database directory or global package database can be removed. The
global package database was introduced in the 1.3 version and is being deprecated by the package database
directory.

Package dependents (reverse dependencies) can be removed when a package is removed using the
‘--add-reverse-deps’ option. The --ignoredeps option allows pkg-rm to remove a package even
though the package being removed is a dependency for another package. By default, pkg-rm will not
remove a package unless all dependents are listed or if the --add-reverse-deps option is given. Like
the pkg-inst tool, pkg-rm, when given the --add-reverse-deps option, will remove only those
components of the dependent package necessary to meet the reverse dependency. An example of this is
show below when xpm is removed and only the runtime component of its dependent package, mgv, is
removed, leaving the man component installed.

The package name given as input to pkg-rm is the same as that used by pkg-inst. A sample run
removing the gzip package follows:

$ pkg-rm gzip
gzip
checking if v1.3.5-1 installed (TWWgzp13) ... yes
installed instances ... TWWgzp13m TWWgzp13u TWWgzp13d

checking for packages dependent on me ... none
checking for dependencies ... none
removing TWWgzp13d ...
$ pkgrm -a /opt/TWWfsw/pkgutils15/share/pkgadd/admin -n TWWgzp13d
...
removing package database entry for doc fileset ... done

removing TWWgzp13u ...
$ pkgrm -a /opt/TWWfsw/pkgutils15/share/pkgadd/admin -n TWWgzp13u
...
removing package database entry for runtime fileset ... done

removing TWWgzp13m ...
$ pkgrm -a /opt/TWWfsw/pkgutils15/share/pkgadd/admin -n TWWgzp13m
...
removing package database entry for man fileset ... done

As an example of the --add-reverse-deps option, the following example removes the xpm package
which automatically removes the mgv package (dependent on the xpm package):

Package Installation Instructions 23

$ pkg-rm xpm
xpm
checking if v3.4k-3 installed (TWWxpm) ... yes
installed instances ... TWWxpm.TWWxpm-RUN

checking for packages dependent on me ... yes
TWWmgv [mgv] ... installed (v3.1.5-2)

checking package list ...
mgv v3.1.5 not found in package list

checking for dependencies ... none
skipping due to failed reverse dependencies

$ pkg-rm --add-reverse-deps xpm
xpm
checking if v3.4k-3 installed (TWWxpm) ... yes
installed instances ... TWWxpm.TWWxpm-RUN

checking for packages dependent on me ... yes
TWWmgv [mgv] ... installed (v3.1.5-2)

reordering packages ...
adding TWWmgv [mgv] (v3.1.5) to package list

checking for dependencies ... none
will remove after dependent packages removed

mgv
checking if v3.1.5-2 installed (TWWmgv) ... yes
installed instances ... TWWmgv.TWWmgv-RUN

checking for packages dependent on me ... none
checking for dependencies ... yes
TWWxpm.TWWxpm-RUN (v>=3.4k, r>=1) ... installed (v3.4k-3)

removing TWWmgv.TWWmgv-RUN ...
$ swremove TWWmgv.TWWmgv-RUN
...
removing package database entry for runtime fileset ... done

xpm
checking if v3.4k-3 installed (TWWxpm) ... yes
installed instances ... TWWxpm.TWWxpm-RUN

checking for packages dependent on me ... none
checking for dependencies ... none
removing TWWxpm.TWWxpm-RUN ...
$ swremove TWWxpm.TWWxpm-RUN
...
removing package database entry for runtime fileset ... done

4.3 Package Information (pkg-info)
The pkg-info tool is used to display information about a package. In addition to displaying the
installation path component of a file (used in section 3.2) it can be used to display a list of installed
packages, what subpackages are installed, if common links have been created for the package, what the
common links are, and populate the package installation database. As with the pkg-inst tool, pkg-info
is independent of the underlying package managment system.

The --link-listing option displays the subpackage components that have common links associated
with them. A sample run of pkg-info with --link-listing=short on Solaris follows:

$ pkg-info --link-listing=short python

Package Installation Instructions 24

python
checking if v2.1.2-12 installed (TWW.python212) ... yes
installed instances ... TWW.python212.man TWW.python212.pkg
TWW.python212.doc TWW.python212.rte
searching for common links ... found

common links ...
bin: TWW.python212.pkg TWW.python212.rte
man: TWW.python212.man

A sample run with --link-listing=long to display the common links created follows:

$ pkg-info --link-listing=long python
python
checking if v2.1.2-12 installed (TWW.python212) ... yes
installed instances ... TWW.python212.man TWW.python212.pkg
TWW.python212.doc TWW.python212.rte
searching for common links ... found
links/wrappers in common directories ...
l /opt/TWWfsw/man/man1/python.1 -> /opt/TWWfsw/python212/man/man1/python.1
l /opt/TWWfsw/bin/gfplus -> /opt/TWWfsw/python212p/bin/gfplus
l /opt/TWWfsw/bin/gfserver -> /opt/TWWfsw/python212p/bin/gfserver
l /opt/TWWfsw/bin/xmlproc_parse -> /opt/TWWfsw/python212p/bin/xmlproc_parse
l /opt/TWWfsw/bin/xmlproc_val -> /opt/TWWfsw/python212p/bin/xmlproc_val
W /opt/TWWfsw/bin/pydoc
W /opt/TWWfsw/bin/python
W /opt/TWWfsw/bin/python2.1

If a description entry exists for a package, a description can be printed using the --print=description
option:

$ pkg-info --print=description python
python
checking if v2.1.2-12 installed (TWW.python212) ... yes
installed instances ... TWW.python212.man TWW.python212.pkg
TWW.python212.doc TWW.python212.rte
description ...
Python is an interpreted, interactive, object-oriented
programming language. Python combines remarkable power with very
clear syntax. It has modules, classes, exceptions, very high
level dynamic data types, and dynamic typing. There are
interfaces to many system calls and libraries, as well as to
various windowing systems (X11, Motif, Tk, Mac, MFC). New
built-in modules are easily written in C or C++. Python is also
usable as an extension language for applications that need a
programmable interface. It is also usable as an extension
language for applications that need a programmable interface.

A repository can also be queried for information about a package:

$ pkg-info --depot=http://updates.thewrittenword.com --dist-ver=5.1
--login=<login> --password=<password> --print=description python-2.2.2
python
depot containing v2.2.2-6 of this package ...
http://updates.il.thewrittenword.com

installation path component for v2.2.2 ... python222
instances ... TWW.python222.man TWW.python222.pkg TWW.python222.doc
TWW.python222.rte
dependencies ...
TWW.openssl097.rte [openssl] (v>=0.9.7.3)

Package Installation Instructions 25

description ...
Python is an interpreted, interactive, object-oriented programming
language. Python combines remarkable power with very clear syntax.
It has modules, classes, exceptions, very high level dynamic data
types, and dynamic typing. There are interfaces to many system
calls and libraries, as well as to various windowing systems (X11,
Motif, Tk, Mac, MFC). New built-in modules are easily written in C
or C++. Python is also usable as an extension language for
applications that need a programmable interface. It is also usable
as an extension language for applications that need a programmable
interface.

While each package management system has a utility to display a list of installed packages, the pkg-info
tool was designed primarily to provide a list of the installed packages independent of those already installed
on the operating system.

The package installation database (cf. section 4.1.1) is used to obtain a list of installed packages. The old
pre-1.4 global package database, ‘/opt/TWWfsw/pkgutils15/share/pkg-db.xml’, is used as a
fallback if the package is not found in the installation database. All packages in the installation database and
global package database are queried to determine which packages are installed. In time, the global package
database will be deprecated and the package installation database will become the sole source of installed
packages. To populate the package installation database from an existing installation, use the
--update-pkg-db option as follows:

$ ls -ld /var/opt/TWWfsw/pkgutils15/libpng-1.0.14
/var/opt/TWWfsw/pkgutils15/libpng-1.0.14: No such file or directory
$ pkg-info --update-pkg-db --verbose
...
libpng
checking if v1.0.14 installed (TWWpng10) ... yes
installed instances ... TWWpng10u TWWpng10m
updating package database entry for runtime fileset ... done
updating package database entry for man fileset ... done

...
$ ls -ld /var/opt/TWWfsw/pkgutils15/libpng-1.0.14
-rw-r--r-- 1 root root 510 Jul 16 18:27 libpng-1.0.14

4.4 Package Configuration (pkg-config)
The pkg-config tool is used to execute the post-install and pre-remove procedure script for a package.
Usually, the post-install script will create the set of common links in the bin, info, and man directories. The
pre-remove script will remove these links. This command is useful if more than one version of a package is
installed and the primary version (the package with links in the common directory) needs to change. It is
also useful if a package was initially installed with COMMON BASE=none in the configuration file (cf. section
3.2.1).

The default action of pkg-config is to execute the post-install script. The --uninstall option executes
the pre-remove script. Note the list of possibilities for the --subpkgs option is more restrictive than with
the other commands in the pkgutils suite. Because the primary purpose is to create/remove the
common links and because common links are only created for the “libruntime”, “man”, “packages”,
and “runtime” subpackages, the list is more restrictive.

Package Installation Instructions 26

A sample run of pkg-config to remove and then recreate the common links on Solaris follows:

$ pkg-config --uninstall python-2.1.2
python
checking if v2.1.2-12 installed (TWW.python212) ... yes
installed instances ... TWW.python212.man TWW.python212.pkg
TWW.python212.doc TWW.python212.rte
searching for common links ... found
removing links in man for TWW.python212.man by running:
$ sh /opt/TWWfsw/python212/tww-inst/links-rm.man
...

removing links in bin for TWW.python212.pkg by running:
$ sh /opt/TWWfsw/python212p/tww-inst/links-rm.pkg
...

removing links in bin for TWW.python212.rte by running:
$ sh /opt/TWWfsw/python212/tww-inst/links-rm.rte
...

$ pkg-info --verbose --link-listing=short python
python
checking if v2.1.2-12 installed (TWW.python212) ... yes
installed instances ... TWW.python212.man TWW.python212.pkg
TWW.python212.doc TWW.python212.rte
searching for common links ... none found

$ pkg-config python-2.1.2
python
checking if v2.1.2-12 installed (TWW.python212) ... yes
installed instances ... TWW.python212.man TWW.python212.pkg
TWW.python212.doc TWW.python212.rte
installing links in man for TWW.python212.man by running:
$ sh /opt/TWWfsw/python212/tww-inst/links-inst.man
...

installing links in bin for TWW.python212.pkg by running:
$ sh /opt/TWWfsw/python212p/tww-inst/links-inst.pkg
...

installing links in bin for TWW.python212.rte by running:
$ sh /opt/TWWfsw/python212/tww-inst/links-inst.rte
...

$ pkg-info --link-listing=short python
python
checking if v2.1.2-12 installed (TWW.python212) ... yes
installed instances ... TWW.python212.man TWW.python212.pkg
TWW.python212.doc TWW.python212.rte
searching for common links ... found

common links ...
bin: TWW.python212.pkg TWW.python212.rte
man: TWW.python212.man

4.5 Checking for updates (chk-pkg-updates)
The chk-pkg-updates tool compares the list of packages installed against a depot and indicates which
packages are up-to-date and which have updates available.

A sample run of chk-pkg-updates on Solaris follows:

Package Installation Instructions 27

$ chk-pkg-updates --dist-ver=5.1 --login=<login> --password=<password>
--depot=http://updates.thewrittenword.com python-2.1.2
python
checking if v2.2.2-6 installed ... no
depot containing this package ...
http://updates.il.thewrittenword.com

checking if update available ... yes (packages)
TWW.python222.man (v2.2.2.6)
TWW.python222.pkg (v2.2.2.6)
TWW.python222.doc (v2.2.2.6)
TWW.python222.rte (v2.2.2.6)

checking if v2.2.1-8 installed ... no
depot containing this package ...
http://updates.il.thewrittenword.com

checking if update available ... yes (packages)
TWW.python221.man (v2.2.1.8)
TWW.python221.pkg (v2.2.1.8)
TWW.python221.doc (v2.2.1.8)
TWW.python221.rte (v2.2.1.8)

checking if v2.1.2-12 installed ... no
depot containing this package ...
http://updates.il.thewrittenword.com

checking if update available ... yes (packages)
TWW.python212.man (v2.1.2.10 < v2.1.2.12)
TWW.python212.doc (v2.1.2.10 < v2.1.2.12)
TWW.python212.rte (v2.1.2.10 < v2.1.2.12)
TWW.python212.pkg (v2.1.2.10 < v2.1.2.12)

Package Installation Instructions 28

Chapter 5

Solaris 2.x (pkgadd)

NOTE: We strongly recommend using the pkg-inst tool, docu-
mented in chapter 4, to install packages.

Solaris packages are provided in pkgadd format. The pkgadd command, found in ‘/usr/sbin’, is used to
install packages. All packages are built and stored in directories rather than individual files because
installation of multiple packages is easier. The last character of the package name denotes its content:

c Local configuration files

d Additional support documentation

m Info and manual pages

p 3rd-party packages

r Library runtime

u Executables, includes, and libraries

Most packages contain the ‘m’ and ‘u’ extensions. Packages such as Perl, XEmacs, and teTeX contain the ‘p’
extension which installs into a different parent directory than the main program (e.g. installation into
‘/opt/TWWfsw/perl5005p’ rather than ‘/opt/TWWfsw/perl5005’ and
‘/opt/TWWfsw/xemacs21p’ rather than ‘/opt/TWWfsw/xemacs21’). The 3rd-party additions are
installed independent of the program to make upgrades to 3rd-party modules easier and for them not to
affect the main program. Packages with documentation not in GNU info or man format will have a separate
package for this documentation installed into either ‘/opt/TWWfsw/package /docs’ or
‘/opt/TWWfsw/package /doc’ and available in the ‘d’ extension. Packages with the ‘c’ extension
contain files to be installed on the local filesystem. Examples of packages with this extension include
Apache, with configuration files in ‘/etc/opt/TWWfsw/apache139’ and log files in
‘/var/opt/TWWfsw/apache139’, Samba, with configuration files in ‘/etc/opt/TWWfsw/samba206’
and log files in ‘/var/opt/TWWfsw/samba206’, and XFce, with CDE configuration files in ‘/etc/dt’.
The library runtime package, packages ending with ‘r’, contain shared libraries for dependency purposes.
With these packages, the full runtime package does not need to be installed to meet a dependency. GCC is
an example of one such package with the library runtime component.

Package Installation Instructions 29

Chapter 6

IRIX 6.x (inst)

NOTE: We strongly recommend using the pkg-inst tool, docu-
mented in chapter 4, to install packages.

IRIX packages are provided in inst format. The inst command, found in ‘/usr/sbin’, is used to install
packages. Each package is comprised of at most four files, ‘package’, ‘package.idb’, ‘package.sw’, and
sometimes ‘package.man’. Packages are built with the following subsets:

sw.base Base software

sw.config Local configuration files

sw.librun Library runtime

sw.packages 3rd-party Packages

man.doc Extra online documentation

man.info GNU info pages

man.pages Manual pages

Most packages contain the subsets ‘sw.base’, ‘man.info’, and ‘man.pages’. Packages such as Perl,
XEmacs, and teTeX contain the ‘sw.packages’ subset which installs into a different parent directory than
the main program (e.g. installation into ‘/opt/TWWfsw/perl5005p’ rather than
‘/opt/TWWfsw/perl5005’ and ‘/opt/TWWfsw/xemacs21p’ rather than
‘/opt/TWWfsw/xemacs21’). The 3rd-party additions are installed independent of the program to make
upgrades to 3rd-party modules easier and for them not to affect the main program. Packages with
documentation not in GNU info or man format will have a separate package for this documentation
installed into either ‘/opt/TWWfsw/package /docs’ or ‘/opt/TWWfsw/package /doc’ and available
in the ‘man.doc’ subset. Packages with the ‘sw.config’ subset contain files to be installed on the local
filesystem. Examples of packages with this extension include Apache, with configuration files in
‘/etc/opt/TWWfsw/apache139’ and log files in ‘/var/opt/TWWfsw/apache139’, Samba, with
configuration files in ‘/etc/opt/TWWfsw/samba206’ and log files in
‘/var/opt/TWWfsw/samba206’, and XFce, with CDE configuration files in ‘/etc/dt’. The library
runtime package, packages ending with ‘.sw.librun’, contain shared libraries for dependency purposes.
With these packages, the full runtime package does not need to be installed to meet a dependency. GCC is

Package Installation Instructions 30

an example of one such package with the library runtime component.

6.1 Procedure scripts
If the installation configuration file indicates that symbolic links should be created after the installation of a
package, the package postinstall script will create symbolic links to the common bin, info, and man
directories and add entries to the ‘dir’ file for all GNU info files. Once the package is removed, a script is
run to remove the entries from the ‘dir’ file for all GNU info files and to remove the symbolic links from
the common bin, info, and man directories.

Because the IRIX package management system does not provide commands similar to the Solaris
‘installf/removef’ or the HP-UX ‘swmodify’ commands, some hacks were required to make the
above work. When the package ‘bin’, ‘info’, or ‘man’ directories are installed, a script is run to create
symbolic links in a common tree. This is done by specifying an ‘exitop’ command as part of the package
to run ‘/opt/TWWfsw/package /tww-inst/make-links’. The argument to ‘exitop’ is a sequence
of shell commands. Because the size of the command is limiting, a separate script was created. If
‘versions long package ’ is executed to view the list of files that comprise the package, this file, and
others under ‘/opt/TWWfsw/package /tww-inst’, will not be listed. These files are not part of the
package file listing because they have the ‘nohist’ attribute set in the package IDB file.

As the symbolic links and wrapper scripts are created, information about the link is saved to
‘/opt/TWWfsw/package /tww-inst/links’. This file stores the type of link, the directory the link
was created for, the source of the link, and the destination. Unlike other package management systems, it is
not possible to register a file as part of a package that is not part of the IDB file. Thus, if the link
information was not recorded, removal of the package would not remove the links. If a wrapper script is
created, the entry for the wrapper in the file contains the pathname of the wrapper and its checksum
(calculated with sum(1)). If a package is updated with a newer instance, this file is read and verified
against what is present in the target installation tree. If any of the symbolic links are invalid or the wrapper
script has changed (because the checksum has changed), the entry in the ‘links’ file will be updated to
reflect the current state.

Once the package is removed, a script is run to remove the symbolic links, remove wrapper scripts, and, if
necessary, remove any entries from the common ‘dir’ file for any GNU info files. This is handled by the
script ‘/opt/TWWfsw/package /tww-inst/rm-links’. Because a record of the existing links has
been created, this script reads the list and removes entries as appropriate. Once complete, it removes the
‘/opt/TWWfsw/package /tww-inst’ directory, because it is not part of the package database.

Package Installation Instructions 31

Chapter 7

HP-UX 10.20, 11.x (depot)

NOTE: We strongly recommend using the pkg-inst tool, docu-
mented in chapter 4, to install packages.

HP-UX packages are provided in depot format. The swinstall command, found in ‘/usr/sbin’, is used
to install packages. Packages are categorized as follows:

CONF Local configuration files

HELP Additional support documentation

LIBR Library runtime

MAN Info and manual pages

PKG 3rd-party packages

RUN Executables, includes, and libraries

Most packages contain the ‘RUN’ and ‘MAN’ subproducts. Packages such as Perl, XEmacs, and teTeX contain
the ‘PKG’ extension which installs into a different parent directory than the main program (e.g. installation
into ‘/opt/TWWfsw/perl5005p’ rather than ‘/opt/TWWfsw/perl5005’ and
‘/opt/TWWfsw/xemacs21p’ rather than ‘/opt/TWWfsw/xemacs21’). The 3rd-party additions are
installed independent of the program to make upgrades to 3rd-party modules easier and for them not to
affect the main program. Packages with documentation not in GNU info or man format will have a separate
package for this documentation installed into either ‘/opt/TWWfsw/package /docs’ or
‘/opt/TWWfsw/package /doc’ and available in the ‘HELP’ subproduct. Files in the ‘CONF’ subproduct
are installed on the local filesystem. Examples of packages with this extension include Apache, with
configuration files in ‘/etc/opt/TWWfsw/apache139’ and log files in
‘/var/opt/TWWfsw/apache139’, Samba, with configuration files in ‘/etc/opt/TWWfsw/samba206’
and log files in ‘/var/opt/TWWfsw/samba206’, and XFce, with CDE configuration files in ‘/etc/dt’.
The library runtime package, packages ending with ‘LIBR’, contain shared libraries for dependency
purposes. With these packages, the full runtime package does not need to be installed to meet a
dependency. GCC is an example of one such package with the library runtime component.

Package Installation Instructions 32

Chapter 8

Compaq Tru64 UNIX 4.0D, 5.1 (setld)

NOTE: We strongly recommend using the pkg-inst tool, docu-
mented in chapter 4, to install packages.

Tru64 UNIX packages are provided in setld format. The setld command, found in ‘/usr/sbin’, is used
to install packages. Packages are categorized as follows:

BIN Executables, includes, and libraries

CONF Local configuration files

DOC Additional support documentation

LIBR Library runtime

MAN Info and manual pages

PKG 3rd-party packages

Most packages contain the ‘BIN’ and ‘MAN’ subproducts. Packages such as Perl, XEmacs, and teTeX contain
the ‘PKG’ extension which installs into a different parent directory than the main program (e.g. installation
into ‘/opt/TWWfsw/perl5005p’ rather than ‘/opt/TWWfsw/perl5005’ and
‘/opt/TWWfsw/xemacs21p’ rather than ‘/opt/TWWfsw/xemacs21’). The 3rd-party additions are
installed independent of the program to make upgrades to 3rd-party modules easier and for them not to
affect the main program. Packages with documentation not in GNU info or man format will have a separate
package for this documentation installed into either ‘/opt/TWWfsw/package /docs’ or
‘/opt/TWWfsw/package /doc’ and available in the ‘DOC’ subproduct. Files in the ‘CONF’ subproduct are
installed on the local filesystem. Examples of packages with this extension include Apache, with
configuration files in ‘/etc/opt/TWWfsw/apache139’ and log files in
‘/var/opt/TWWfsw/apache139’, and Samba, with configuration files in
‘/etc/opt/TWWfsw/samba206’ and log files in ‘/var/opt/TWWfsw/samba206’. The library runtime
package, packages ending with ‘LIBR’, contain shared libraries for dependency purposes. With these
packages, the full runtime package does not need to be installed to meet a dependency. GCC is an example
of one such package with the library runtime component.

Package Installation Instructions 33

8.1 Patch requirement for Tru64 UNIX 5.1
Tru64 UNIX 5.1 requires the installation of patches #260 and #262 from patch kit #3 to provide an
important feature enhancement to the Tru64 UNIX loader, /sbin/loader. Versions of Tru64 up to this
patch will not load dependent libraries when dlopen()’ing shared libraries. This is an inconvenience for
3rd-party modules loaded dynamically by Apache, Perl, Python, etc. Our workaround prior to this patch
was to build the 3rd-party modules statically to reduce the need for setting the LD LIBRARY PATH

environment variable. With patch kit #3 for Tru64 UNIX 5.1, this limitation is removed.

Package Installation Instructions 34

Chapter 9

AIX 4.3.2 (lpp)

NOTE: We strongly recommend using the pkg-inst tool, docu-
mented in chapter 4, to install packages.

AIX packages are provided in AIX backup (bff) format. The installp command, found in ‘/usr/sbin’,
is used to install and remove packages. Packages are categorized as follows:

.rte Executables, includes, and libraries

.conf Local configuration files

.doc Additional support documentation

.librun Library runtime

.man Info and manual pages

.pkg 3rd-party packages

According to the IBM “Packaging Software for Installation” documentation, the “usr” portion of a fileset
contains files that can be shared among several machines while the “root” portion of a fileset contains files
that cannot be shared among machines. This usually implies that files installed to /usr are part of the “usr”
portion and files installed outside of /usr are part of the “root” portion. Because packages install to
/opt/TWWfsw, filesets contain either the “usr” portion only or both the “usr” and “root” portion with files
destined for /opt/TWWfsw/ making up the “usr” portion and files destined for /etc/opt/TWWfsw or
/var/opt/TWWfsw making up the “root” portion.

Most packages contain the ‘.rte’ and ‘.man’ filesets. Packages such as Perl, XEmacs, and teTeX contain
the ‘.pkg’ fileset which installs into a different parent directory than the main program (e.g. installation
into ‘/opt/TWWfsw/perl5005p’ rather than ‘/opt/TWWfsw/perl5005’ and
‘/opt/TWWfsw/xemacs21p’ rather than ‘/opt/TWWfsw/xemacs21’). The 3rd-party additions are
installed independent of the program to make upgrades to 3rd-party modules easier and for them not to
affect the main program. Packages with documentation not in GNU info or man format will have a separate
package for this documentation installed into either ‘/opt/TWWfsw/package /docs’ or
‘/opt/TWWfsw/package /doc’ and available in the ‘.doc’ fileset. Packages with the ‘.conf’ fileset
contain files to be installed on the local filesystem. Examples of packages with this extension include

Package Installation Instructions 35

Apache, with configuration files in ‘/etc/opt/TWWfsw/apache139’ and log files in
‘/var/opt/TWWfsw/apache139’, and Samba, with configuration files in
‘/etc/opt/TWWfsw/samba206’ and log files in ‘/var/opt/TWWfsw/samba206’. The library runtime
fileset, packages ending with ‘.librun’, contain shared libraries for dependency purposes. With these
packages, the full runtime package does not need to be installed to meet a dependency. GCC is an example
of one such package with the library runtime component.

9.1 Procedure scripts
If the installation configuration file indicates that symbolic links should be created after the installation of a
package, the package postinstall script will create symbolic links to the common bin, info, and man
directories and add entries to the ‘dir’ file for all GNU info files. Once the package is removed, a script is
run to remove the entries from the ‘dir’ file for all GNU info files and to remove the symbolic links from
the common bin, info, and man directories.

Because the AIX package management system does not provide commands similar to the Solaris
‘installf/removef’ or the HP-UX ‘swmodify’ commands, some hacks were required to make the
above work. When the package ‘bin’, ‘info’, or ‘man’ directories are installed, a postinstall script is run to
create symbolic links in a common tree.

As the symbolic links and wrapper scripts are created, information about the link is saved to
‘/opt/TWWfsw/package /tww-inst/links’. This file stores the type of link, the directory the link was
created for, the source of the link, and the destination. Unlike other package management systems, it is not
possible to register a file as part of a package that is not part of the fileset. Thus, if the link information was
not recorded, removal of the package would not remove the links. If a wrapper script is created, the entry for
the wrapper in the file contains the pathname of the wrapper and its checksum (calculated with sum(1)).
If a package is updated with a newer instance, this file is read and verified against what is present in the
target installation tree. If any of the symbolic links are invalid or the wrapper script has changed (because
the checksum has changed), the entry in the ‘links’ file will be updated to reflect the current state.

Once the package is removed, a script is run to remove the symbolic links, wrapper scripts, and, if necessary,
any entries from the common ‘dir’ file for any GNU info files. This is handled by the postremove script,
the opposite of the postinstall script. Because a record of the existing links has been created, this script
reads the list and removes entries as appropriate. Once complete, it removes the
‘/opt/TWWfsw/package /tww-inst’ directory, because it is not part of the package database.

9.2 Handling non-portable files
The AIX package manager restricts files that are part of a fileset to the portable filename character set
standard. This “standard” does not include the colon (‘:’) character in pathnames. This is a problem for Perl
packages which contain ‘::’ in the pathname for man pages to 3rd-party modules. Our workaround is not
to save “invalid” files in the LPP package but to embed them in the postinstall script for the package fileset
and unpack them at postinstall time. The side effect of this is that the AIX package management system will
not be aware of the files. The files are removed at package removal time by the preremove script. The only
other solution to this issue was to replace the invalid characters with valid characters. However, this would

Package Installation Instructions 36

have affected multi-platform customers so we opted for our workaround.

Package Installation Instructions 37

Chapter 10

RPM (Redhat Linux and others)

NOTE: We strongly recommend using the pkg-inst tool, docu-
mented in chapter 4, to install packages.

The rpm package manager provides a cross-platform package management tool. RPM packages can be
installed on all supported platforms and is the default package management system for Redhat Linux. The
design of the postinstall scripts for the RPM packages make it easy to install RPM packages into an
NFS-mounted area for remote clients. RPM packages consist of the following subpackages:

(no suffix) Executables, includes, and libraries

-conf Local configuration files

-doc Additional support documentation

-librun Library runtime

-man Info and manual pages

-pkg 3rd-party packages

Most packages contain the executable package and the ‘-man’ subpackage. Packages such as Perl, XEmacs,
and teTeX contain the ‘-pkg’ subpackage which installs into a different parent directory than the main
program (e.g. installation into ‘/opt/TWWfsw/perl5005p’ rather than ‘/opt/TWWfsw/perl5005’ and
‘/opt/TWWfsw/xemacs21p’ rather than ‘/opt/TWWfsw/xemacs21’). The 3rd-party additions are
installed independent of the program to make upgrades to 3rd-party modules easier and for them not to
affect the main program. Packages with documentation not in GNU info or man format will have a separate
package for this documentation installed into either ‘/opt/TWWfsw/package /docs’ or
‘/opt/TWWfsw/package /doc’ and available in the ‘-doc’ subpackage. Files in the ‘-conf’ subpackage
are installed on the local filesystem. Examples of packages with this extension include Apache, with
configuration files in ‘/etc/opt/TWWfsw/apache139’ and log files in
‘/var/opt/TWWfsw/apache139’, and Samba, with configuration files in
‘/etc/opt/TWWfsw/samba206’ and log files in ‘/var/opt/TWWfsw/samba206’. The library runtime
package, packages ending with ‘-librun’, contain shared libraries for dependency purposes. With these
packages, the full runtime package does not need to be installed to meet a dependency. GCC is an example
of one such package with the library runtime component.

Package Installation Instructions 38

10.1 Configuring RPM
This section can be skipped if using Redhat Linux where RPM is already configured.

The default location for the RPM database is ‘/var/opt/TWWfsw/rpm40/lib/rpm’. The location of the
database can be changed with the ‘--dbpath’ switch to the rpm command or by editing the value of the
‘% dbpath’ variable in ‘/opt/TWWfsw/rpm40/lib/rpm/macros’. Each architecture must have its own
database as rpm does not support multiple architectures in one database. If installing rpm packages on
multiple hosts, this is not an issue. However, if installing multiple platforms on a single host, a different
path must be used for the RPM database for each platform (section 11.1 might be of interest).

After a path to the RPM database has been selected, it must be initialized for usage with the following
command:

$ rpm --initdb [--dbpath=[db path]]

When an RPM package is installed, postinstall and postremove scripts are created in a temporary directory.
The default path for this directory is ‘/var/opt/TWWfsw/rpm40/tmp’. To change this path, edit the
value of the ‘% tmppath’ variable in /opt/TWWfsw/rpm40/lib/rpm/macros. The temporary
directory must exist prior to installing any RPM package. If not, postinstall scripts will not run (though the
package will be installed).

10.2 Package installation
The gzip package will be used to demonstrate how to install a package. The command to issue if installing
the Tru64 UNIX gzip binaries on a Tru64 UNIX host is:

$ rpm -Uv --dbpath=/var/rpm/alpha-dec-osf4.0d TWWos-1.0-1.alpha.rpm
$ rpm -Uv --dbpath=/var/rpm/alpha-dec-osf4.0d TWWtin-1.4.2-1.alpha.rpm

The ‘--dbpath’ option specifies the location of the rpm database.

The ‘-U’ option installs the indicated package (rpm also accepts a ‘-i’ argument as a replacement for ‘-U’
for initial installs but because ‘-U’ works for the initial installation and upgrades, it is used). Because of the
way RPM packages are built, each package is dependent on ‘/bin/sh’. The package ‘TWWos’ provides this
dependency and therefore must be installed prior to installing any package. The ‘TWWos’ package is not
needed on Redhat Linux if using the default RPM database directory but will be needed if specifying a
database directory differing from the default. The package does not replace ‘/bin/sh’ but simply records
in the RPM database that ‘/bin/sh’ is available and provided by ‘TWWos’.

Once the package is installed, scripts will execute following installation to create links in the common bin,
info, and man directories. rpm will not prompt for the location of the common directories.

Because RPM packages are cross-platform, it is possible to install non-native binaries. The installation
instructions are similar to the above but it is important that the RPM database directory differ for each
architecture. Thus, to install the gzip binaries for Solaris 2.5.1 and Solaris 2.6 on a Tru64 UNIX host, the
following would be done:

$ rpm -Uv --dbpath=/var/rpm/sparc-sun-solaris2.5.1 --relocate \
/opt/TWWfsw=/nfs/sparc-sun-solaris2.5.1 --ignorearch --ignoreos \
/tmp/solaris2.5.1-rpms/TWWos-1.0-1.sparc.rpm

Package Installation Instructions 39

$ rpm -Uv --dbpath=/var/rpm/sparc-sun-solaris2.5.1 --relocate \
/opt/TWWfsw=/nfs/sparc-sun-solaris2.5.1 --ignorearch --ignoreos \
/tmp/solaris2.5.1-rpms/TWWtin-1.4.2-1.sparc.rpm
$ rpm -Uv --dbpath=/var/rpm/sparc-sun-solaris2.6 --relocate \
/opt/TWWfsw=/nfs/sparc-sun-solaris2.6 --ignorearch --ignoreos \
/tmp/solaris2.6-rpms/TWWos-1.0-1.sparc.rpm
$ rpm -Uv --dbpath=/var/rpm/sparc-sun-solaris2.6 --relocate \
/opt/TWWfsw=/nfs/sparc-sun-solaris2.6 --ignorearch --ignoreos \
/tmp/solaris2.6-rpms/TWWtin-1.4.2-1.sparc.rpm

The ‘--relocate’ option installs all files with a given prefix to an alternate directory. This is necessary if
installing multiple architectures on the same platform. It is also possible to relocate ‘/etc/opt/TWWfsw’
and ‘/var/opt/TWWfsw’. Only directories specified in the RPM package as relocatable can be relocated.

10.3 Package removal
Removing packages is done by replacing the ‘-U’ option with the ‘-e’ option. To remove the gzip package
from the first example above:

$ rpm -ev --dbpath=/var/rpm/alpha-dec-osf4.0d TWWtin-1.4.2
$ rpm -ev --dbpath=/var/rpm/alpha-dec-osf4.0d TWWos-1.0-1

To remove the gzip package from the second example:

$ rpm -ev --dbpath=/var/rpm/sparc-sun-solaris2.5.1 TWWtin-1.4.2
$ rpm -ev --dbpath=/var/rpm/sparc-sun-solaris2.5.1 TWWos-1.0
$ rpm -ev --dbpath=/var/rpm/sparc-sun-solaris2.6 TWWtin-1.4.2
$ rpm -ev --dbpath=/var/rpm/sparc-sun-solaris2.6 TWWos-1.0

10.4 Package upgrade
When a package is upgraded, with the new version replacing the old by installing into the same directory,
rpm adds new files that are part of the new package but not part of the old package and removes old files
that are not part of the new package. If symbolic links have been created in a common bin, info, and man
directory, the links will be preserved during the upgrade. If the package being overwritten contains
configuration files, rpm will preserve changes to the old configuration files.

10.5 Procedure scripts
If the configuration file indicates that symbolic links should be created after the installation of a package,
the package postinstall script will create symbolic links to the common bin, info, and man directories and
add entries to the ‘dir’ file for all GNU info files. Once the package is removed, a script is run to remove
the entries from the ‘dir’ file for all GNU info files and to remove the symbolic links from the common
bin, info, and man directories.

The ‘COMMON BASE’ variable in the configuration file (cf. section 3.2.1) indicates the base directory to use
when creating the links. Unlike the native package-management programs though, RPM postinstall scripts
use ‘COMMON BASE systype ’. Because RPM is cross-platform, a separate variable was needed to specify
the common base directory in the event multiple architectures were installed on one platform. The

Package Installation Instructions 40

possibility also existed that, depending on the architecture, the common base directory might be different.
Therefore, RPM postinstall scripts do not honor the ‘COMMON BASE’ variable but use
‘COMMON BASE systype ’. Thus, using the cross-platform examples above, the global configuration file
‘/etc/opt/TWWfsw/configs/default’ might look like:

COMMON_BASE_sparc-sun-solaris2.5.1=/nfs/sparc-sun-solaris2.5.1/

COMMON_BASE_sparc-sun-solaris2.6=/nfs/sparc-sun-solaris2.6/

INST_UPGRADE=latest

INST_VERBOSE=1

Because the RPM package management system does not provide commands similar to the Solaris
‘installf/removef’ or the HP-UX ‘swmodify’ commands, some hacks were required to maintain the
links to the common directories. When the package ‘bin’, ‘info’, or ‘man’ directories are installed, the
postinstall script creates symbolic links in a common directory and registers the links in a file underneath
the package installation directory. This file, ‘package /tww-inst/links’ is not registered with the RPM
package management system nor are the links registered. Therefore, when invoking rpm with the ‘-ql’
option to list the files in the package, the ‘links’ file will not be registered. This file stores the type of link,
the directory the link was created for, the source of the link, the destination, and the local destination
(might be different from the destination of the link if ‘--relocate’ is used).

Unlike other package management systems, it is not possible to register a file as part of a package that is
not part of the spec file. Thus, if the link information was not recorded, removal of the package would not
remove the links. If a wrapper script is created, the entry for the wrapper in the file contains the pathname
of the wrapper and its checksum (calculated with sum(1)). If a package is updated with a newer instance,
this file is read and verified against what is present in the target installation tree. If any of the symbolic links
are invalid or the wrapper script has changed (because the checksum has changed), the entry in the
‘links’ file will be updated to reflect the current state.

Once the package is removed, a preremove script is run to remove the symbolic links, remove wrapper
scripts, and, if necessary, remove any entries from the common ‘dir’ file for any GNU info files. Because a
record of the existing links has been created, this script reads the list and removes entries as appropriate.

Package Installation Instructions 41

Chapter 11

Installation Scenarios

11.1 Installation for multiple platforms onto a central server
using RPM

Using RPM, it is possible to host packages for multiple platforms on a central server. This is often done
when deploying the software to client workstations using NFS. While there are some deficiencies with RPM
when installing on non-native platforms, it provides a solution to this problem.

By default, the RPM database resides in ‘/var/opt/TWWfsw/rpm40/lib/rpm’. This location works well
if RPM is only being used to install packages for the system on which RPM is run. However, if using RPM to
install packages from multiple platforms, a separate RPM database must be created for each platform.
Because packages for each platform have the same name, RPM will be unable to differentiate between a
package for one platform over another. The ‘--dbpath=path ’ option to RPM can be used to specify an
alternate location for the RPM database.

In the examples to follow, RPM packages for the following platforms will be installed onto a Solaris 7 server:
Solaris 2.5.1, HP-UX 10.20, and IRIX 6.5. Additional platforms such as Tru64 UNIX are installed in a similar
manner. Before initializing the RPM database for each of the platforms, we must bootstrap the RPM
installation process by installing the RPM package. As our host platform is Solaris 7, a Solaris pkgadd
package for RPM must be installed.

The Solaris packages for RPM v4.0.4 are named TWWrpm40u for the RPM runtime and TWWrpm40m for the
man pages. Installation is done as follows:

$ pkgadd -d . TWWrpm40u TWWrpm40m

As RPM is now configured, the location of the RPM databases must be selected as RPM will be used to
install all future packages. For the examples to follow, ‘/nfs/TWWfsw/arch /rpmdb’ will be the
designated location, where ‘arch’ will be ‘sol251’ for Solaris 2.5.1, ‘hpux10’ for HP-UX 10.20, and
‘irix65’ for IRIX 6.5. RPM packages that would otherwise be installed into ‘/opt/TWWfsw’ will be
installed into ‘/nfs/TWWfsw/arch ’. While the software must still run from ‘/opt/TWWfsw’, the client
workstations will mount the appropriate directory from the Solaris 7 server onto ‘/opt/TWWfsw’ for
execution. To initialize the RPM database for each of the platforms we intend to install for:

Package Installation Instructions 42

$ rpm --initdb --dbpath=/nfs/TWWfsw/hpux10/rpmdb
$ rpm --initdb --dbpath=/nfs/TWWfsw/irix65/rpmdb
$ rpm --initdb --dbpath=/nfs/TWWfsw/sol251/rpmdb

Because all RPM packages have postinstall scripts, they depend on /bin/sh. As the Solaris sytem provides
/bin/sh, a package must be added to RPM that provides /bin/sh without copying in a new binary and
overwriting the system /bin/sh binary. This is done through the ‘Provides’ variable in an RPM spec file.
The package that provides this is ‘TWWos’. It exists in the ‘support’ directory of the first CD. It must be
the first RPM package installed. Installation is done as follows:

$ rpm -Uv --dbpath=/nfs/TWWfsw/sol251/rpmdb --ignoreos --ignorearch
/tmp/pkgs/sol251/TWWos-1.0-1.sparc.rpm
$ rpm -Uv --dbpath=/nfs/TWWfsw/hpux10/rpmdb --ignoreos --ignorearch
/tmp/pkgs/hpux10/TWWos-1.0-1.sparc.rpm
$ rpm -Uv --dbpath=/nfs/TWWfsw/irix65/rpmdb --ignoreos --ignorearch
/tmp/pkgs/irix65/TWWos-1.0-1.sparc.rpm

Finally, installation of RPM packages can begin. The --ignoreos and --ignorearch arguments to
RPM allow installation of non-native packages on the host platform. These options will be used in all of the
following examples. Another option to be used will be the --relocate option. This option allows us to
install all packages destined for ‘/opt/TWWfsw/package ’ to ‘/nfs/TWWfsw/arch /package ’. It will
also allow us to relocate the local configuration files that are installed into ‘/var/opt/TWWfsw’ and
‘/etc/opt/TWWfsw’. Only -conf packages are installed in these directories. For NFS installs, these
package components are usually ignored or the package is not installed.

To install the first package, GNU zip (gzip), the following commands are issued:

$ rpm -Uv --dbpath=/nfs/TWWfsw/sol251/rpmdb --ignoreos --ignorearch
--relocate /opt/TWWfsw=/nfs/TWWfsw/sol251
/tmp/pkgs/sol251/TWWgzip-1.3-1.sparc.rpm
/tmp/pkgs/sol251/TWWgzip-man-1.3-1.sparc.rpm

$ rpm -Uv --dbpath=/nfs/TWWfsw/hpux10/rpmdb --ignoreos --ignorearch
--relocate /opt/TWWfsw=/nfs/TWWfsw/hpux10
/tmp/pkgs/sol251/TWWgzip-1.3-1.parisc.rpm
/tmp/pkgs/sol251/TWWgzip-man-1.3-1.parisc.rpm

$ rpm -Uv --dbpath=/nfs/TWWfsw/irix65/rpmdb --ignoreos --ignorearch
--relocate /opt/TWWfsw=/nfs/TWWfsw/irix65
/tmp/pkgs/sol251/TWWgzip-1.3-1.mipseb.rpm
/tmp/pkgs/sol251/TWWgzip-man-1.3-1.mipseb.rpm

If using pkg-inst, the equivalent commands are:

$ pkg-inst --pkg-type=rpm --rpm-db=/nfs/TWWfsw/sol251/rpmdb
--rpm-arch=sparc -e --ignoreos -e --ignorearch
-e --relocate -e /opt/TWWfsw=/nfs/TWWfsw/sol251
--depot=/tmp/pkgs/sol251 gzip

$ pkg-inst --pkg-type=rpm --rpm-db=/nfs/TWWfsw/hpux10/rpmdb
--rpm-arch=parisc -e --ignoreos -e --ignorearch
-e --relocate -e /opt/TWWfsw=/nfs/TWWfsw/hpux10
--depot=/tmp/pkgs/hpux10 gzip

$ pkg-inst --pkg-type=rpm --rpm-db=/nfs/TWWfsw/irix65/rpmdb
--rpm-arch=mipseb -e --ignoreos -e --ignorearch
-e --relocate -e /opt/TWWfsw=/nfs/TWWfsw/irix65
--depot=/tmp/pkgs/irix65 gzip

Please note that even though installation does not occur to ‘/opt/TWWfsw’, ‘COMMON BASE’ must still be

Package Installation Instructions 43

configured in ‘/etc/opt/TWWfsw/configs/default’ following the description given in section 3.2.1
(see also sections 3.2ff). Based on our configuration, our copy of
‘/etc/opt/TWWfsw/configs/default’ would look like:

COMMON_BASE_sparc_sun_solaris2_5_1=/nfs/TWWfsw/sol251/

COMMON_BASE_hppa1_1_hp_hpux10_20=/nfs/TWWfsw/hpux10/

COMMON_BASE_mips_sgi_irix6_5=/nfs/TWWfsw/irix65/

INST_UPGRADE=latest

INST_VERBOSE=1

In addition, even though the installation directory has been relocated, the destination of links created by
the postinstall scripts will remain the same. Thus, if installing as normal to ‘/opt/TWWfsw’ with
‘COMMON BASE sparc-sun-solaris2.5.1’ set to ‘/opt/TWWfsw/’:

$ cd /opt/TWWfsw/bin
$ ls -l
lrwxrwxrwx 1 root other 27 Feb 2 08:59 gunzip -> /opt/TWWfsw/gzip/bin/gunzip
lrwxrwxrwx 1 root other 25 Feb 2 08:59 gzip -> /opt/TWWfsw/gzip/bin/gzip

And, if installing into ‘/nfs/TWWfsw/sol251’ with ‘COMMON BASE sparc-sun-solaris2.5.1’ set
to ‘/nfs/TWWfsw/sol251/’:

$ cd /nfs/TWWfsw/sol251/bin
$ ls -l
lrwxrwxrwx 1 root other 27 Feb 2 08:59 gunzip -> /opt/TWWfsw/gzip/bin/gunzip
lrwxrwxrwx 1 root other 25 Feb 2 08:59 gzip -> /opt/TWWfsw/gzip/bin/gzip

Removing packages is similar to the method used to install a package. To remove the GNU zip (gzip)
package, the following commands are used:

$ rpm -ev --dbpath=/nfs/TWWfsw/sol251/rpmdb TWWgzip TWWgzip-man
$ rpm -ev --dbpath=/nfs/TWWfsw/hpux10/rpmdb TWWgzip TWWgzip-man
$ rpm -ev --dbpath=/nfs/TWWfsw/irix65/rpmdb TWWgzip TWWgzip-man

Package Installation Instructions 44

Package Installation Instructions

THE WRITTEN WORD

2003 November 14

